China Professional Gear Rack Great Quality Stainless Steel Helical Spur POM Plastic and Pinion Steering Metric Ground Linear Flexible Best Price Manufacturer Industrial Gear Rack helical bevel gear

Product Description

Gear Rack Great quality stainless steel helical Spur POM Plastic and pinion steering metric Ground linear flexible best price manufacturer industrial Gear Rack 

Our spur and helical gear racks are welcomed by many customers for its stable high quality and competitive price.

 

The producing character of EP gear racks.

1. Gear rack length: the longest is 4000mm without joint. It can be jointed to any length.

2. Material: steel C45, stainless steel, high strength steel, copper, aluminium, nylon, plastic, POM etc;

3. Module: 0.3-8 (pitch from 0.942-25.12mm, DP 3.175-85);

4. Quality: stable and high: accumulated tolerance 0.1mm per 1000mm for normal quality;

 Accumulated tolerance 0.02mm per 1000mm for 4 sides ground.

Prices for above quality are very competitive for us.

 

The quality character of EP gear racks:

1. Stable transmission and low noise;

2. Effectively avoid normal tolerance based on high precision;

3. The surfaces can be ground to grade 7 quality, and teeth can be ground to grade 6 quality;

4. The mounting holes can be made as request;

5. The price is competitive even the quality is high.

 

Facilities

Machining center;  

CNC gear hobbing machine;

CNC gear shaper;

CNC gear grinding machine;

CNC turning machine;

CNC milling machine.

Y58200 CNC large gear rack shaper,

Y58125A gear rack shaper,

England gear rack shaper

and Russia gear rack shaper,

Gleason machine.

Material

 

More: PA6, PA66, POM, ABS etc.

Teeth type

Spur teeth gear rack;

Helical teeth gear rack;

Round gear rack;

Tube gear rack;

Curved gear rack.

Type: Gear Rack
Certification: CE, ISO9001: 2000
Condition: New
Teeth Type: Spur Teeth or Helical Teeth
Material: Stainless Steel
Module: 0.4-8
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

spur gear rack

How do spur gear racks contribute to efficient and precise linear motion?

Spur gear racks play a significant role in achieving efficient and precise linear motion in various mechanical systems. They offer several advantages that contribute to the overall performance and accuracy of linear motion mechanisms. Here’s how spur gear racks contribute to efficient and precise linear motion:

  • Direct Conversion of Rotational to Linear Motion: Spur gear racks provide a direct conversion of rotational motion into linear motion. When a spur gear, known as a pinion, meshes with the gear rack, the rotary motion of the pinion is translated into linear motion along the rack’s length. This direct conversion eliminates the need for additional mechanisms or complex linkages, reducing energy losses and improving overall efficiency.
  • High Efficiency: Spur gear racks are known for their high mechanical efficiency. The teeth of the gear rack and pinion mesh in a straight line, resulting in efficient power transmission with minimal energy losses. The involute tooth profile commonly used in spur gear systems ensures gradual and smooth tooth engagement, reducing friction and minimizing power wastage. This high efficiency contributes to the overall energy efficiency of the linear motion system.
  • Precise Positioning: Spur gear racks offer precise positioning capabilities, making them suitable for applications that require accurate linear motion. The teeth of the gear rack and pinion provide positive engagement, ensuring precise and repeatable positioning along the rack’s length. This allows for accurate control and positioning of loads, making spur gear racks suitable for applications such as CNC machines, robotics, and precision positioning systems.
  • Low Backlash: Backlash refers to the slight clearance or play between mating gears. Spur gear racks can be designed with minimal backlash, ensuring accurate and responsive linear motion. The teeth of the gear rack and pinion engage tightly, minimizing any undesirable movement or backlash during direction changes or load reversals. Low backlash contributes to the system’s precision, especially in applications where accurate positioning and control are critical.
  • Load Distribution: Spur gear racks distribute the load over a larger contact area compared to other linear motion mechanisms. The multiple teeth along the rack’s length distribute the load evenly, reducing stress concentrations and enhancing load-carrying capacity. This load distribution capability allows for the handling of higher loads while maintaining smooth and precise linear motion.
  • Modularity and Scalability: Spur gear racks offer modularity and scalability, making them adaptable to various system requirements. Gear racks can be easily extended or shortened to achieve the desired linear travel distance. Additionally, multiple gear racks can be combined or stacked to achieve longer travel distances or parallel linear motion. This modularity and scalability make spur gear racks versatile and suitable for a wide range of applications.
  • Reliability and Durability: Spur gear racks are known for their reliability and durability. The simple and robust design of gear racks, combined with proper lubrication and maintenance, ensures long-term performance and minimal downtime. Spur gear racks can withstand high loads, operate under demanding conditions, and provide consistent linear motion over extended periods, contributing to the overall reliability and durability of the linear motion system.

By leveraging the advantages offered by spur gear racks, engineers and designers can achieve efficient, precise, and reliable linear motion in a wide range of applications. The selection of suitable gear rack materials, tooth profiles, and proper maintenance practices further enhance the performance and longevity of the linear motion system.

spur gear rack

What materials are commonly used in the construction of spur gear racks?

In the construction of spur gear racks, several materials are commonly used to ensure strength, durability, and efficient performance. The choice of material depends on factors such as the specific application requirements, operating conditions, and budget constraints. Here are some materials commonly used in the construction of spur gear racks:

  • Steel Alloys: Steel alloys, such as carbon steel and alloy steel, are widely employed in the construction of spur gear racks. These materials offer excellent strength, hardness, and wear resistance. Carbon steel, such as SAE 1045 or 1050, is commonly used for gear racks due to its high tensile strength and affordability. Alloy steels, such as 8620 or 4140, provide enhanced mechanical properties and are utilized in applications requiring higher load-carrying capacity or increased toughness.
  • Stainless Steel: Stainless steel is another popular material choice for spur gear racks, especially in applications where corrosion resistance is crucial. Stainless steel alloys, such as AISI 300 series (e.g., 304 or 316), offer excellent resistance to moisture, chemicals, and atmospheric corrosion. These materials are commonly used in food processing equipment, marine applications, or environments with high humidity or exposure to corrosive substances.
  • Cast Iron: Cast iron is utilized in the construction of gear racks when high strength and wear resistance are required. Gray cast iron (e.g., ASTM A48 Class 40) is commonly used due to its good machinability, damping properties, and ability to withstand heavy loads. Cast iron gear racks are often employed in industrial machinery, power transmission systems, and applications with demanding operating conditions.
  • Plastics: Engineered plastics, such as nylon (polyamide) and acetal (polyoxymethylene), are used in applications where noise reduction, self-lubrication, and resistance to chemical corrosion are desirable. Plastic gear racks offer advantages such as lightweight, low friction, and the ability to run without additional lubrication. They find applications in industries like automotive, consumer electronics, and medical equipment.
  • Bronze and Brass: Bronze and brass alloys are utilized in specific applications that require excellent machinability, low friction, and resistance to wear. Phosphor bronze (e.g., ASTM B139) and brass (e.g., ASTM B16) are commonly used for gear racks in applications such as musical instruments, clocks, and low-load precision machinery.

It’s important to note that the selection of the appropriate material for a spur gear rack depends on various factors, including the specific application requirements, load conditions, operating temperatures, and environmental factors. Engineers and designers consider these factors to determine the most suitable material that will provide the necessary strength, durability, and performance for the intended application.

spur gear rack

How is a spur gear rack different from other types of gear racks?

A spur gear rack is a specific type of gear rack, distinguished by its straight teeth that are parallel to the axis of the rack. While other types of gear racks may have different tooth profiles or orientations, the main differences lie in their design and application.

Helical Gear Rack: Unlike spur gear racks, helical gear racks have teeth that are cut at an angle, forming a helix shape. This helical arrangement allows for smoother and quieter operation compared to spur gear racks. Helical gear racks are commonly used in applications where high precision, load capacity, and reduced noise are important, such as in CNC machines and industrial automation systems.

Bevel Gear Rack: Bevel gear racks are designed to transmit motion between intersecting shafts with different orientations. Instead of a straight bar, a bevel gear rack consists of a curved or angled rack surface that meshes with a bevel gear. This configuration allows for the transfer of motion at various angles, making it suitable for applications such as steering systems in vehicles and certain power transmission systems.

Worm Gear Rack: In a worm gear rack system, a worm gear engages with the rack to convert rotational motion into linear motion. The worm gear has a threaded shaft that meshes with the teeth on the rack. Worm gear rack setups are commonly used in applications where a large reduction ratio is required, such as in lifting mechanisms, conveyor systems, and certain types of machinery.

Rack and Pinion Gear Rack: The rack and pinion gear rack system consists of a straight rack and a cylindrical gear (pinion) that meshes with the rack. This arrangement is similar to a spur gear rack, but the pinion gear is typically smaller in diameter and has a different tooth profile. Rack and pinion gear racks are widely used in steering systems, linear actuators, and many other applications that require linear motion conversion.

Each type of gear rack has its own advantages and is suited for specific applications. The choice of gear rack type depends on factors such as load requirements, precision, noise considerations, gear ratio, and the desired motion characteristics.

China Professional Gear Rack Great Quality Stainless Steel Helical Spur POM Plastic and Pinion Steering Metric Ground Linear Flexible Best Price Manufacturer Industrial Gear Rack helical bevel gearChina Professional Gear Rack Great Quality Stainless Steel Helical Spur POM Plastic and Pinion Steering Metric Ground Linear Flexible Best Price Manufacturer Industrial Gear Rack helical bevel gear
editor by CX 2023-09-15