Product Description
Product Description
Nylon Gear Rack
made of nylon and has steel bar inside,used for sliding gate.
It normally works with Gate Motor.
We have 2 Eyes Light, 2 Eyes Heavy,4 Eyes Light and 6 Eyes Heavy.
Each piece of nylon gear rack has screws as pictures show below,
Our products are exported to Southeast Asia, Europe, South America, etc. Reliable quality
You are warmly welcome to send us an inquiry for detailed information.
Product Name | Specification | Modulus | Material |
Nylon Rack | 2 Eyes Light | M4 | PA66 |
Nylon Rack | 2 Eyes Heavy | M4 | PA66 |
Nylon Rack | 4 Eyes Light | M4 | PA66 |
Nylon Rack | 6 Eyes Heavy | M4 | PA66 |
Iron Rack | 8*30*1005 | M4 | Q235 |
Iron Rack | 8*30*1998 | M4 | Q235 |
Iron Rack | 9*30*1005 | M4 | Q235 |
Iron Rack | 10*30*1005 | M4 | Q235 |
Iron Rack | 10*30*1998 | M4 | Q235 |
Iron Rack | 11*30*1005 | M4 | Q235 |
Iron Rack | 11*30*1998 | M4 | Q235 |
Iron Rack | 12*30*1005 | M4 | Q235 |
Iron Rack | 12*30*1998 | M4 | Q235 |
Iron Rack | 22*22*1005 | M4 | Q235 |
Iron Rack | 22*22*1998 | M4 | Q235 |
Iron Rack | 30*30*998 | M6 | Q235 |
Iron Rack | 30*30*1998 | M6 | Q235 |
Company Profile
Main Products
Production Process
Packaging & Shipping
FAQ
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Color: | Fixed |
---|---|
Customized: | Customized |
Standard: | International |
Type: | Connection |
Material: | Nylon and Iron |
Modulus: | M4 |
Samples: |
US$ 0/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can spur gear racks be used in both mobile and stationary machinery?
Yes, spur gear racks can be used in both mobile and stationary machinery, depending on the specific application requirements. The versatility and reliability of spur gear racks make them suitable for various types of machinery, regardless of whether they are mobile or stationary. Here’s a detailed explanation:
Mobile Machinery:
Spur gear racks are commonly employed in mobile machinery, such as vehicles, construction equipment, agricultural machinery, and transportation systems. They offer several advantages in these applications:
- Power Transmission: Spur gear racks efficiently transmit power from the drive source to the desired components or systems in mobile machinery. They can be used to transfer rotational motion from engines, motors, or power take-off units to various mechanisms, such as steering systems, lifting arms, or conveyor belts.
- Linear Motion: In mobile machinery, spur gear racks are often utilized to achieve linear motion. For example, they can be employed in telescopic mechanisms for extending or retracting components, such as outriggers on cranes or sliding platforms on trucks. Gear racks provide a reliable and compact solution for linear motion requirements in mobile applications.
- Load Handling: Mobile machinery often needs to handle heavy loads or perform lifting and lowering operations. Spur gear racks, with their ability to distribute loads evenly and provide precise positioning, are well-suited for these tasks. They can be used in lifting mechanisms, winches, or material handling systems to ensure controlled and efficient load handling.
- Steering Systems: Spur gear racks are widely utilized in steering systems of vehicles, including cars, trucks, and heavy-duty equipment. They translate the rotational motion of the steering wheel into linear motion to control the direction of the wheels. Spur gear racks offer accurate and responsive steering, ensuring safe and reliable maneuverability.
Stationary Machinery:
Spur gear racks are also extensively employed in stationary machinery across various industries, including manufacturing, automation, packaging, and more. Some key applications of spur gear racks in stationary machinery include:
- Precision Positioning Systems: Spur gear racks play a crucial role in precision positioning systems, such as CNC machines, laser cutting systems, and automated assembly lines. They provide accurate and repeatable linear motion, allowing for precise control and positioning of tools, workpieces, or components.
- Conveyor Systems: In stationary machinery, spur gear racks are commonly used in conveyor systems to facilitate the movement of materials or products. Gear racks provide a reliable and efficient solution for linear motion in conveyor belts, ensuring smooth and controlled material handling.
- Packaging Machinery: Spur gear racks are employed in various packaging machinery, such as filling machines, labeling machines, and packaging lines. They enable linear motion for precise positioning and synchronization of packaging components, ensuring accurate and efficient packaging processes.
- Industrial Automation: In industrial automation systems, spur gear racks are utilized for linear actuators, robotic arms, and other motion control mechanisms. They enable precise and controlled linear motion, allowing for the automation of various tasks and processes in manufacturing and assembly operations.
Overall, spur gear racks offer a versatile and reliable solution for achieving linear motion in both mobile and stationary machinery. Their ability to transmit power, provide accurate positioning, and handle loads makes them suitable for a wide range of applications in diverse industries.
What materials are commonly used in the construction of spur gear racks?
In the construction of spur gear racks, several materials are commonly used to ensure strength, durability, and efficient performance. The choice of material depends on factors such as the specific application requirements, operating conditions, and budget constraints. Here are some materials commonly used in the construction of spur gear racks:
- Steel Alloys: Steel alloys, such as carbon steel and alloy steel, are widely employed in the construction of spur gear racks. These materials offer excellent strength, hardness, and wear resistance. Carbon steel, such as SAE 1045 or 1050, is commonly used for gear racks due to its high tensile strength and affordability. Alloy steels, such as 8620 or 4140, provide enhanced mechanical properties and are utilized in applications requiring higher load-carrying capacity or increased toughness.
- Stainless Steel: Stainless steel is another popular material choice for spur gear racks, especially in applications where corrosion resistance is crucial. Stainless steel alloys, such as AISI 300 series (e.g., 304 or 316), offer excellent resistance to moisture, chemicals, and atmospheric corrosion. These materials are commonly used in food processing equipment, marine applications, or environments with high humidity or exposure to corrosive substances.
- Cast Iron: Cast iron is utilized in the construction of gear racks when high strength and wear resistance are required. Gray cast iron (e.g., ASTM A48 Class 40) is commonly used due to its good machinability, damping properties, and ability to withstand heavy loads. Cast iron gear racks are often employed in industrial machinery, power transmission systems, and applications with demanding operating conditions.
- Plastics: Engineered plastics, such as nylon (polyamide) and acetal (polyoxymethylene), are used in applications where noise reduction, self-lubrication, and resistance to chemical corrosion are desirable. Plastic gear racks offer advantages such as lightweight, low friction, and the ability to run without additional lubrication. They find applications in industries like automotive, consumer electronics, and medical equipment.
- Bronze and Brass: Bronze and brass alloys are utilized in specific applications that require excellent machinability, low friction, and resistance to wear. Phosphor bronze (e.g., ASTM B139) and brass (e.g., ASTM B16) are commonly used for gear racks in applications such as musical instruments, clocks, and low-load precision machinery.
It’s important to note that the selection of the appropriate material for a spur gear rack depends on various factors, including the specific application requirements, load conditions, operating temperatures, and environmental factors. Engineers and designers consider these factors to determine the most suitable material that will provide the necessary strength, durability, and performance for the intended application.
Can you explain the purpose and applications of spur gear racks in machinery?
Spur gear racks serve various purposes and find widespread applications in machinery across different industries. They are commonly used for the conversion of rotational motion into linear motion or vice versa. Here are some key purposes and applications of spur gear racks:
Motion Conversion: One of the primary purposes of spur gear racks is to convert rotational motion into linear motion. By meshing with a pinion gear, the teeth on the rack translate the rotational movement of the pinion into a linear movement along the length of the rack. This linear motion can be utilized to drive various mechanisms and components in machinery.
Positioning and Precision: Spur gear racks are often employed for precise positioning tasks in machinery. The linear motion provided by the rack allows for accurate movement and positioning of components, tools, or workpieces. This is particularly useful in applications such as CNC machines, where precise positioning is critical for machining operations.
Power Transmission: Spur gear racks are used to transmit power between different components in machinery. By incorporating a pinion gear that meshes with the rack, rotational motion can be transferred from one part of the machinery to another. This enables the transmission of power to drive various mechanisms, such as conveyors, lifts, or other linear motion systems.
Steering Systems: Spur gear racks play a crucial role in rack and pinion steering systems, commonly used in automobiles and other vehicles. The rotational motion of the steering wheel is converted into linear motion through the interaction between the pinion gear and the rack. This allows for precise control of the vehicle’s steering, enabling the driver to navigate and maneuver the vehicle.
Linear Actuators: Spur gear racks are utilized in linear actuator systems to generate linear motion for pushing, pulling, or positioning loads. The rack and pinion configuration provides a simple and efficient method for converting rotational motion into linear motion. Linear actuators employing spur gear racks are used in various applications, including robotics, industrial automation, and machinery positioning systems.
Machine Tools: In machine tools such as milling machines, lathes, and drilling machines, spur gear racks are employed for precise movement and positioning of cutting tools or workpieces. The linear motion provided by the rack enables controlled and accurate machining operations, contributing to the overall performance and quality of the machined parts.
Automation and Robotics: Spur gear racks are widely used in automation and robotics systems. They facilitate linear motion for the movement of robotic arms, conveyors, and other automated mechanisms. The precise and controlled motion offered by spur gear racks is instrumental in achieving accurate and repeatable operations in automated processes.
Industrial Machinery: Spur gear racks find applications in various industrial machinery, including packaging machines, printing presses, textile machinery, material handling systems, and more. They contribute to the efficient and reliable operation of these machines by providing linear motion, power transmission, and precise positioning capabilities.
Overall, spur gear racks play a vital role in machinery, enabling linear motion, precise positioning, power transmission, and automation. Their versatility and reliability make them a fundamental component in numerous applications across diverse industries.
editor by CX 2024-04-10